Bin continuous data using quantiles.

rbin_quantiles(
  data = NULL,
  response = NULL,
  predictor = NULL,
  bins = 10,
  include_na = TRUE
)

# S3 method for rbin_quantiles
plot(x, print_plot = TRUE, ...)

Arguments

data

A data.frame or tibble.

response

Response variable.

predictor

Predictor variable.

bins

Number of bins.

include_na

logical; if TRUE, a separate bin is created for missing values.

x

An object of class rbin_quantiles.

print_plot

logical; if TRUE, prints the plot else returns a plot object.

...

further arguments passed to or from other methods.

Value

A tibble.

Examples

bins <- rbin_quantiles(mbank, y, age, 10) bins
#> Binning Summary #> ----------------------------- #> Method Quantile #> Response y #> Predictor age #> Bins 10 #> Count 4521 #> Goods 517 #> Bads 4004 #> Entropy 0.5 #> Information Value 0.12 #> #> #> cut_point bin_count good bad woe #> 1 < 29 410 71 339 -0.483686036 #> 2 < 31 313 41 272 -0.154776266 #> 3 < 34 567 55 512 0.183985174 #> 4 < 36 396 45 351 0.007117468 #> 5 < 39 519 47 472 0.259825118 #> 6 < 42 431 33 398 0.442938178 #> 7 < 46 449 47 402 0.099298221 #> 8 < 51 521 40 481 0.439981550 #> 9 < 56 445 49 396 0.042587647 #> 10 >= 56 470 89 381 -0.592843261 #> iv entropy #> 1 2.547353e-02 0.6649069 #> 2 1.760055e-03 0.5601482 #> 3 3.953685e-03 0.4594187 #> 4 4.425063e-06 0.5107878 #> 5 7.008270e-03 0.4383322 #> 6 1.575567e-02 0.3899626 #> 7 9.423907e-04 0.4836486 #> 8 1.881380e-02 0.3907140 #> 9 1.756117e-04 0.5002548 #> 10 4.564428e-02 0.7001343
# plot plot(bins)