Skip to contents

Bin continuous data manually.

Usage

rbin_manual(
  data = NULL,
  response = NULL,
  predictor = NULL,
  cut_points = NULL,
  include_na = TRUE
)

# S3 method for class 'rbin_manual'
plot(x, print_plot = TRUE, ...)

Arguments

data

A data.frame or tibble.

response

Response variable.

predictor

Predictor variable.

cut_points

Cut points for binning.

include_na

logical; if TRUE, a separate bin is created for missing values.

x

An object of class rbin_manual.

print_plot

logical; if TRUE, prints the plot else returns a plot object.

...

further arguments passed to or from other methods.

Value

A tibble.

Details

Specify the upper open interval for each bin. `rbin` follows the left closed and right open interval. If you want to create_bins 10 bins, the app will show you only 9 input boxes. The interval for the 10th bin is automatically computed. For example, if you want the first bin to have all the values between the minimum and including 36, then you will enter the value 37.

Examples

bins <- rbin_manual(mbank, y, age, c(29, 31, 34, 36, 39, 42, 46, 51, 56))
bins
#> Binning Summary
#> ---------------------------
#> Method               Manual 
#> Response             y 
#> Predictor            age 
#> Bins                 10 
#> Count                4521 
#> Goods                517 
#> Bads                 4004 
#> Entropy              0.5 
#> Information Value    0.12 
#> 
#> 
#>    cut_point bin_count good bad          woe           iv   entropy
#> 1       < 29       410   71 339 -0.483686036 2.547353e-02 0.6649069
#> 2       < 31       313   41 272 -0.154776266 1.760055e-03 0.5601482
#> 3       < 34       567   55 512  0.183985174 3.953685e-03 0.4594187
#> 4       < 36       396   45 351  0.007117468 4.425063e-06 0.5107878
#> 5       < 39       519   47 472  0.259825118 7.008270e-03 0.4383322
#> 6       < 42       431   33 398  0.442938178 1.575567e-02 0.3899626
#> 7       < 46       449   47 402  0.099298221 9.423907e-04 0.4836486
#> 8       < 51       521   40 481  0.439981550 1.881380e-02 0.3907140
#> 9       < 56       445   49 396  0.042587647 1.756117e-04 0.5002548
#> 10     >= 56       470   89 381 -0.592843261 4.564428e-02 0.7001343

# plot
plot(bins)