Weight of evidence and information value for categorical data.

rbin_factor(data = NULL, response = NULL, predictor = NULL, include_na = TRUE)

# S3 method for rbin_factor
plot(x, print_plot = TRUE, ...)

Arguments

data

A data.frame or tibble.

response

Response variable.

predictor

Predictor variable.

include_na

logical; if TRUE, a separate bin is created for missing values.

x

An object of class rbin_factor.

print_plot

logical; if TRUE, prints the plot else returns a plot object.

...

further arguments passed to or from other methods.

Examples

bins <- rbin_factor(mbank, y, education) bins
#> Binning Summary #> --------------------------- #> Method Custom #> Response y #> Predictor education #> Levels 4 #> Count 4521 #> Goods 517 #> Bads 4004 #> Entropy 0.51 #> Information Value 0.05 #> #> #> level bin_count good bad woe iv #> 1 tertiary 1299 195 1104 -0.3133106 0.031785905 #> 2 secondary 2352 231 2121 0.1702190 0.014113157 #> 3 primary 691 66 625 0.2010906 0.005717878 #> 4 unknown 179 25 154 -0.2289295 0.002265111 #> entropy #> 1 0.6101292 #> 2 0.4633093 #> 3 0.4546110 #> 4 0.5833603
# plot plot(bins)